.. _installation: Installation ================================== The following modules are needed to run TandemMod. .. list-table:: Required modules :widths: 50 50 :header-rows: 1 * - module - version * - minimap2 - 2.17-r941 * - python - 3.7.12 * - h5py - 3.7.0 * - statsmodels - 0.10.0 * - joblib - 0.16.0 * - scikit-learn - 0.22 * - torch - 1.9.1 * - guppy - 6.1.5 * - ont-tombo - 1.5.1 * - ont_vbz_hdf_plugin - 1.0.1 * - ont-fast5-api - 4.1.1 * - numpy - 1.19.5 Conda is recommended for package management, you can create a new conda environment and then install the packages. Here's an example of how you can do it. Create a new conda environment:: conda create -n TandemMod python=3.7.12 Activate the newly created environment:: conda activate TandemMod Install the required modules:: conda config --add channels conda-forge conda config --add channels bioconda conda install -c conda-forge scipy=1.7.0 conda install -c bioconda minimap2=2.17 conda install -c conda-forge numpy=1.19.5 conda install -c anaconda h5py=3.7.0 conda install -c conda-forge joblib=0.16.0 conda install -c anaconda scikit-learn=0.22 conda install -c bioconda ont-tombo=1.5.1 conda install -c bioconda ont_vbz_hdf_plugin=1.0.1 conda install -c bioconda ont-fast5-api=4.1.1 conda install -c conda-forge statsmodels=0.10.0 pip install torch==1.9.1 Or, some of the modules can be installed by pip:: pip install numpy==1.19.5 pip install h5py==3.7.0 pip install statsmodels==0.10.0 pip install joblib==0.16.0 pip install scikit-learn==0.22 pip install ont-tombo==1.5.1 pip install ont-fast5-api==4.1.1 pip install scipy==1.7.0 Guppy can be obtained from `Oxford Nanopore Technologies `_ or from this `mirror `_. Install Guppy using dpkg:: alien ont-guppy-cpu-6.1.5-1.el7.x86_64.rpm dpkg -i ont-guppy-cpu-6.1.5-1.el7.x86_64.deb ``libhdf5`` and ``libcrypto`` are required for running guppy. The entire installation will take about 10 minutes. After installing all the essential packages, reset the environment's state by deactivating and reactivating the environment: :: conda deactivate conda activate TandemMod We have also provided a yaml file in the repository so you can install the dependencies through the configuration file:: conda env create -f TandemMod.yaml The source code and data processing scripts are available on `GitHub `_. You can download them by using the git clone command:: git clone https://github.com/yulab2021/TandemMod.git TandemMod offers three modes: de novo training, transfer learning, and prediction. Researchers can train from scratch, fine-tune pre-trained models, or apply existing models for predictions. It provides a user-friendly solution for studying RNA modifications. In the provided repository, the pretrained models are located under the ``./models`` directory, and the data processing scripts and the main script are located under the ``./scripts`` directory:: . ├── data │   ├── A_test.tsv │   ├── A_train.tsv │   ├── m5C │   ├── m6A │   ├── m6A_test.tsv │   └── m6A_train.tsv ├── demo │   ├── fast5 │   │   └── batch_0.fast5 │   ├── files.txt │   ├── guppy │   │   ├── fail │   │   │   └── fastq_runid_71d544d3bd9e1fe7886a5d176c756a576d30ed50_0_0.fastq │   │   ├── guppy_basecaller_log-2023-06-06_09-58-28.log │   │   ├── pass │   │   │   └── fastq_runid_71d544d3bd9e1fe7886a5d176c756a576d30ed50_0_0.fastq │   │   ├── sequencing_summary.txt │   │   ├── sequencing_telemetry.js │   │   └── workspace │   │   └── batch_0.fast5 ├── models │   ├── hm5C_transfered_from_m5C.pkl │   ├── m1A_train_on_rice_cDNA.pkl │   ├── m5C_train_on_rice_cDNA.pkl │   ├── m6A_train_on_rice_cDNA.pkl │   ├── m7G_transfered_from_m5C.pkl │   ├── psU_transfered_from_m5C.pkl │   ├── test.model │   └── test.pkl ├── plot ├── README.md ├── scripts │   ├── extract_feature_from_signal.py │   ├── extract_signal_from_fast5.py │   ├── __init__.py │   ├── models.py │   ├── TandemMod.py │   ├── train_test_split.py │   ├── transcriptome_loci_to_genome_loci.py │   └── utils.py └── TandemMod.yaml