.. _installation: Installation ================================== The following modules are needed to run modCnet. .. list-table:: Required modules :widths: 50 50 :header-rows: 1 * - module - version * - minimap2 - 2.17-r941 * - python - 3.7.12 * - h5py - 3.7.0 * - statsmodels - 0.10.0 * - joblib - 0.16.0 * - scikit-learn - 0.22 * - torch - 1.9.1 * - guppy - 6.1.5 * - ont-tombo - 1.5.1 * - ont_vbz_hdf_plugin - 1.0.1 * - ont-fast5-api - 4.1.1 * - numpy - 1.19.5 Conda is recommended for package management, you can create a new conda environment and then install the packages. Here's an example of how you can do it. Create a new conda environment:: conda create -n TandemMod python=3.7.12 Activate the newly created environment:: conda activate TandemMod Install the required modules:: conda config --add channels conda-forge conda config --add channels bioconda conda install -c conda-forge scipy=1.7.0 conda install -c bioconda minimap2=2.17 conda install -c conda-forge numpy=1.19.5 conda install -c anaconda h5py=3.7.0 conda install -c conda-forge joblib=0.16.0 conda install -c anaconda scikit-learn=0.22 conda install -c bioconda ont-tombo=1.5.1 conda install -c bioconda ont_vbz_hdf_plugin=1.0.1 conda install -c bioconda ont-fast5-api=4.1.1 conda install -c conda-forge statsmodels=0.10.0 pip install torch==1.9.1 Or, some of the modules can be installed by pip:: pip install numpy==1.19.5 pip install h5py==3.7.0 pip install statsmodels==0.10.0 pip install joblib==0.16.0 pip install scikit-learn==0.22 pip install ont-tombo==1.5.1 pip install ont-fast5-api==4.1.1 pip install scipy==1.7.0 Guppy can be obtained from `Oxford Nanopore Technologies `_ or from this `mirror `_. Install Guppy using dpkg:: alien ont-guppy-cpu-6.1.5-1.el7.x86_64.rpm dpkg -i ont-guppy-cpu-6.1.5-1.el7.x86_64.deb ``libhdf5`` and ``libcrypto`` are required for running guppy. The entire installation will take about 10 minutes. After installing all the essential packages, reset the environment's state by deactivating and reactivating the environment: :: conda deactivate conda activate modCnet We have also provided a yaml file in the repository so you can install the dependencies through the configuration file:: conda env create -f modCnet.yaml The source code and data processing scripts are available on `GitHub `_. You can download them by using the git clone command:: git clone https://github.com/yulab2021/modCnet.git In the provided repository, the pretrained models are located under the ``./model`` directory, and the data processing scripts and the main script are located under the ``./script`` directory:: . ├── modCnet.yaml ├── data │   ├── event_level_features_C_base_quality.csv │   ├── event_level_features_C_length.csv │   ├── event_level_features_C_mean.csv │   ├── event_level_features_C_median.csv │   ├── event_level_features_C_std.csv │   ├── IVT_transcripts_ac4C.csv │   ├── IVT_transcripts_C.csv │   ├── IVT_transcripts_m5C.csv │   ├── qPCR_curve_4.13_1.csv │   ├── qPCR_curve_4.13_2.csv │   └── Rn_cycle_curve.csv ├── demo_data │   ├── ac4C.feature.test.tsv │   ├── ac4C.feature.train.tsv │   ├── C.feature.test.tsv │   ├── C.feature.train.tsv │   ├── GRCh38_subset_reference.fa │   ├── HeLa │   ├── IVT_DRS.reference.fasta │   ├── IVT_fast5 │   ├── IVT_fast5_guppy │   ├── IVT_fast5_guppy_single │   ├── IVT.fastq │   ├── IVT.feature │   ├── IVT.sam │   ├── m5C.feature.test.tsv │   ├── m5C.feature.train.tsv │   ├── model │   └── test.feature.tsv ├── docs │   └── test ├── model │   ├── C_ac4C.pkl │   ├── C_m5C_ac4C.pkl │   ├── C_m5C.pkl │   └── m5C_ac4C.pkl ├── README.md ├── results_reproduce │   └── figure1_script.ipynb └── script ├── modCnet.py ├── feature_extraction.py ├── __init__.py ├── model.py ├── models.py ├── __pycache__ ├── read_level_prediction_to_site_level_prediction.py ├── transcriptome_location_to_genome_location.py └── utils.py