.. _installation: Installation ================================== The following modules are needed to run scGO. .. list-table:: Required modules :widths: 50 50 :header-rows: 1 * - module - version * - python - 3.8.13 * - torch - 1.9.1 * - scanpy - 1.9.3 * - scikit-learn - 1.3.2 * - scipy - 1.10.1 Conda is recommended for package management, you can create a new conda environment and then install the packages. Here's an example of how you can do it. Create a new conda environment:: conda create -n scGO python=3.8.13 Activate the newly created environment:: conda activate scGO Install the required modules:: pip install torch==1.9.1 pip install scanpy==1.9.3 pip install scikit-learn==1.3.2 pip install scipy==1.10.1 The entire installation will take about 1-5 minutes. After installing all the essential packages, reset the environment's state by deactivating and reactivating the environment: :: conda deactivate conda activate scGO We have also provided a yaml file in the repository so you can install the dependencies through the configuration file:: conda env create -f scGO.yaml The source code and data processing scripts are available on `GitHub `_. You can download them by using the git clone command:: git clone https://github.com/yulab2021/scGO.git TandemMod offers three modes: de novo training, transfer learning, and prediction. Researchers can train from scratch, fine-tune pre-trained models, or apply existing models for predictions. It provides a user-friendly solution for studying RNA modifications. In the provided repository, the pretrained models are located under the ``./models`` directory, and the data processing scripts and the main script are located under the ``./scripts`` directory:: scGO ├── data │   ├── goa_human.gaf.zip │   └── TF_annotation_hg38.demo.tsv ├── demo │   ├── baron_data.csv │   ├── baron_data_filtered.csv │   ├── baron_data_filtered.predicted.csv │   ├── baron_meta_data.csv │   ├── baron_meta_data_senescence_score.csv │   ├── baron_meta_data_senescence_score.predicted.csv │   ├── feature │   ├── gene_TF_dict │   ├── gene_to_TF_transform_matrix │   ├── goa_human.gaf.zip │   ├── GO_mask │   ├── GO_TF_mask │   ├── test_data.csv │   ├── TF_annotation_hg38.demo.tsv │   ├── TF_gene_dict │   └── TF_mask ├── models │   ├── scGO.demo.pkl │   └── scGO.senescence_score.demo.pkl ├── README.md ├── results_reproduce ├── scGO.yml └── scripts ├── data_processing.py ├── __init__.py ├── models.py ├── __pycache__ │   ├── models.cpython-38.pyc │   └── utils.cpython-38.pyc ├── rds_to_csv.r ├── scGO.py ├── test.csv ├── test.ipynb └── utils.py