Installation
The following modules are needed to run scGO.
module |
version |
---|---|
python |
3.8.13 |
torch |
1.9.1 |
scanpy |
1.9.3 |
scikit-learn |
1.3.2 |
scipy |
1.10.1 |
Conda is recommended for package management, you can create a new conda environment and then install the packages. Here’s an example of how you can do it. Create a new conda environment:
conda create -n scGO python=3.8.13
Activate the newly created environment:
conda activate scGO
Install the required modules:
pip install torch==1.9.1
pip install scanpy==1.9.3
pip install scikit-learn==1.3.2
pip install scipy==1.10.1
The entire installation will take about 1-5 minutes. After installing all the essential packages, reset the environment’s state by deactivating and reactivating the environment:
conda deactivate
conda activate scGO
We have also provided a yaml file in the repository so you can install the dependencies through the configuration file:
conda env create -f scGO.yaml
The source code and data processing scripts are available on GitHub. You can download them by using the git clone command:
git clone https://github.com/yulab2021/scGO.git
TandemMod offers three modes: de novo training, transfer learning, and prediction. Researchers can train from scratch, fine-tune pre-trained models, or apply existing models for predictions. It provides a user-friendly solution for studying RNA modifications.
In the provided repository, the pretrained models are located under the ./models
directory, and the data processing scripts and the main script are located under the ./scripts
directory:
scGO
├── data
│ ├── goa_human.gaf.zip
│ └── TF_annotation_hg38.demo.tsv
├── demo
│ ├── baron_data.csv
│ ├── baron_data_filtered.csv
│ ├── baron_data_filtered.predicted.csv
│ ├── baron_meta_data.csv
│ ├── baron_meta_data_senescence_score.csv
│ ├── baron_meta_data_senescence_score.predicted.csv
│ ├── feature
│ ├── gene_TF_dict
│ ├── gene_to_TF_transform_matrix
│ ├── goa_human.gaf.zip
│ ├── GO_mask
│ ├── GO_TF_mask
│ ├── test_data.csv
│ ├── TF_annotation_hg38.demo.tsv
│ ├── TF_gene_dict
│ └── TF_mask
├── models
│ ├── scGO.demo.pkl
│ └── scGO.senescence_score.demo.pkl
├── README.md
├── results_reproduce
├── scGO.yml
└── scripts
├── data_processing.py
├── __init__.py
├── models.py
├── __pycache__
│ ├── models.cpython-38.pyc
│ └── utils.cpython-38.pyc
├── rds_to_csv.r
├── scGO.py
├── test.csv
├── test.ipynb
└── utils.py